Suicide Analysis
Welcome to my Data project. It is a analysis on the suicide rates worldwide based on gender.
Features
- Ability to clearly see the number of suicides worldwide
- Compare suicides based on gender and deduct reasoning
- Compare 2 datasets (suicides and U.S. Happiness) to better explain hypothesis
Open GitHub Repo »
View Demo
·
Report Bug
·
Request Feature
Built With
Function used to plot correlation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
def corrfunc(x, y, **kwargs):
def pvalue_stars(p):
if 0.05 >= p > 0.01:
return '*'
elif 0.01 >= p > 0.001:
return '**'
elif p <= 0.001:
return '***'
else:
return ''
cmap = kwargs['cmap']
norm = kwargs['norm']
ax = plt.gca()
ax.grid(False)
r, p = pearsonr(x, y)
facecolor = cmap(norm(r))
ax.set_facecolor(facecolor)
lightness = (max(facecolor[:3]) + min(facecolor[:3])) / 2
ax.annotate(f"{r:.2f}{pvalue_stars(p)}", xy=(.5, .5), xycoords=ax,
color='white' if lightness < 0.7 else 'black',
size=18, ha='center', va='center')
g = sns.PairGrid(masterCat, height=1.5, diag_sharey=False)
g.map_lower(sns.scatterplot)
g.map_upper(corrfunc,
cmap=plt.get_cmap('RdBu_r'),
norm=plt.Normalize(vmin=-1, vmax=1))
g.add_legend()
plt.show()
A graph used in the analysis
1
2
3
4
5
6
7
8
9
suicides_gender_USA = px.line(test, x='year',y='percapita')
suicides_gender_USA.data[0].name="Male"
suicides_gender_USA['data'][0]['line']['color']='rgb(23, 54, 255)'
suicides_gender_USA.update_traces(showlegend=True)
suicides_gender_USA.add_scatter( x=testWomen['year'],y=testWomen['percapita'],name='Women')
suicides_gender_USA['data'][1]['line']['color']='rgb(237, 9, 9)'
This post is licensed under
CC BY 4.0
by the author.